Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Coatings ; 12(8), 2022.
Article in English | Scopus | ID: covidwho-2039793

ABSTRACT

The journal retracts the article “Utilizing of (Zinc Oxide Nano-Spray) for Disinfection against “SARS-CoV-2” and Testing Its Biological Effectiveness on Some Biochemical Parameters during (COVID-19 Pandemic)—“ZnO Nanoparticles Have Antiviral Activity against (SARS-CoV-2)” Coatings 2021, 11, 388” [1]. The peer review process for this article was compromised. The identity of at least one reviewer was found to be false. This is a clear violation of journal policy. Following an additional review of the published paper by the Editorial Board and journal, it was found that the conclusions were not supported by the data. The authors were asked to respond and were unable to do so satisfactorily. The Editorial Office (and Editor-in-Chief) take incidents of peer review interference very seriously and have a zero-tolerance policy towards such actions. The article is therefore retracted. This retraction was approved by the Editor-in-Chief of the journal, Dr. Alessandro Lavacchi. The authors did not agree to this retraction. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

2.
Coatings ; 11(5), 2021.
Article in English | Scopus | ID: covidwho-1232584

ABSTRACT

Applications of medicinal uses of metals and their complexes have been gaining major clinical significance, especially during the COVID-19 pandemic. The ligation behavior of quercetin (Q), a flavonoid, and Zn metal, i.e., the Zn/Q complex, was fully characterized based on molar conductance, infrared (IR) spectra, elemental analysis, electronic spectra, thermogravimetric analysis, proton nuclear magnetic resonance (1H-NMR), and transmission electron microscopy (TEM) in our lab. Hepatotoxicity was induced by cadmium (CdCl2 ). A total of 40 male albino rats were randomly distributed into the following four groups: Control, hepatotoxic group (CdCl2 ), Zn/Q-treated group, and group treated with a combination of CdCl2 and Zn/Q. Serum hepatic enzymes (AST, ALT, and LDH), total protein, and enzymatic and nonenzymatic antioxidant levels were determined. Histology and TEM for hepatic tissues, in addition to the gene expression of SOD as an antioxidant enzyme in the hepatic tissues, were evaluated. The Q/Zn treatment demonstrated potent protective effects against CdCl2-induced sever oxidative stress and suppressed hepatic toxicity, genotoxicity, liver enzyme disturbances, and structural alterations. In conclusion, the Zn/Q complex produced a high potent antioxidant effect against the oxidative injury and genotoxicity induced by CdCl2 and could be considered to be a potent ameliorative hepatoprotective agent against CdCl2 hepatotoxicity, which could be beneficial during the COVID-19 pandemic. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

4.
Hum Exp Toxicol ; 40(2): 325-341, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1067095

ABSTRACT

To assess the chondroprotective effect and influence of N,N'-bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-oxopyrazol-4-yl) sebacamide (dpdo) that was synthesized through the reaction of phenazone with sebacoyl chloride and screened for its biological activity especially as anti-arthritic and anti-inflammatory agent in a monoiodoacetate (MA)-induced experimental osteoarthritis (OA) model. Thirty male albino rats weighing "190-200 g" were divided randomly into three groups (10 each): control, MA-induced OA, and MA-induced OA + dpdo. In MA-induced OA rat, the tumor necrosis factor alpha, interleukin 6, C-reactive protein, rheumatoid factors, reactive oxygen species, as well as all the mitochondrial markers such as mitochondria membrane potential, swelling mitochondria, cytochrome c oxidase (complex IV), and serum oxidative/antioxidant status (malondialdehyde level and activities of myeloperoxidase and xanthine oxidase) are elevated. Also, the activity of succinate dehydrogenase (complex II), levels of ATP, the level of glutathione (GSH), and thiol were markedly diminished in the MA-induced OA group compared to the normal control rats. These findings showed that mitochondrial function is associated with OA pathophysiological alterations and high gene expressions of (IL-6, TNF-a, and IL-1b) and suggests a promising use of dpdo as potential ameliorative agents in the animal model of OA and could act as anti-inflammatory agent in case of severe infection with COVID-19. It is clearly appeared in improving the bone cortex and bone marrow in the treated group with the novel compound in histological and transmission electron microscopic sections which is a very important issue today in fighting severe infections that have significant effects on the blood indices and declining of blood corpuscles like COVID-19, in addition to declining the genotoxicity and inflammation induced by MA in male rats. The novel synthesized compound was highly effective in improving all the above mentioned parameters.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Osteoarthritis/drug therapy , SARS-CoV-2 , Adenosine Triphosphate/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Bone and Bones/drug effects , Bone and Bones/pathology , Bone and Bones/ultrastructure , C-Reactive Protein/analysis , Cytochromes c/metabolism , Cytokines/metabolism , Disease Models, Animal , Glutathione/metabolism , Iodoacetic Acid , Lipid Peroxidation/drug effects , Male , Matrix Metalloproteinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/physiology , Osteoarthritis/chemically induced , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL